🦁
Voyz的算法笔记
  • Voyz的算法笔记
  • 归纳总结
    • 排序算法
    • 二分法
    • 滑动窗口
    • 双指针
    • 动态规划
    • DFS/回溯算法
    • BFS
    • 贪心算法
  • 排序算法
    • 冒泡排序
    • 选择排序
    • 插入排序
    • 希尔排序
    • 归并排序
    • 快速排序
    • 堆排序
    • 计数排序
    • 桶排序
    • 基数排序
  • 数组
    • 数组中第k大的元素
    • 最长上升子数组
    • 构建乘积数组
    • 和为 s 的连续正数序列
    • 和为 s 的两个数字
    • 连续子数组的最大和
    • 排序数组中的出现次数
    • 奇数位于偶数前
    • 数组中超过一半的数字
    • 旋转数组的最小数字
    • 左旋转字符串
    • 合并有序数组
  • 字符串
    • 电话号码的字母组合
    • 判断回文字符串
    • 生成有效括号
    • 找出回文子串
    • 最长公共前缀
    • 翻转单词顺序
    • 替换空格
    • Z字形变换
  • 矩阵
    • 矩阵置零
    • 螺旋矩阵
    • 搜索二维矩阵
    • 旋转图像
    • 杨辉三角
    • 矩阵查找
    • 矩阵中的路径
    • 顺时针打印矩阵
  • 栈和队列
    • 定义栈数据结构
    • 根据身高重建队列
    • 计算后缀表达式
    • 中缀转后缀
    • 包含 min 函数的栈
    • 从尾到头打印链表
    • 队列的最大值
    • 滑动窗口的最大值
    • 用两个栈实现队列
    • 栈的压入、弹出序列
    • 判断括号有效
  • 哈希表
    • 第一个只出现一次的字符
    • 数组中重复的数字
    • LRU 缓存机制
  • 链表
    • 反转链表
    • 反转链表部分链表
    • 复制带随机指针的链表
    • 复制复杂链表
    • 删除倒数第n个节点
    • 合并两个排序的链表
    • 链表倒数第 k 个节点
    • 两个链表的第一个公共节点
    • 删除链表的节点
    • 环形链表入环位置
    • 链表是否有环
    • 判断回文链表
    • K 个一组翻转链表
  • DFS/回溯算法
    • 不重复字母构成字符串
    • 单词搜索
    • 岛屿数量
    • 分割回文串
    • 全排列
    • 数组组合总和
    • 子集
    • 机器人的运动范围
  • BFS
    • 从上到下打印二叉树
    • 从上到下打印二叉树II
    • 从上到下打印二叉树III
    • 二叉树的最小深度
    • 打开转盘锁
  • 动态规划
    • 打家劫舍I
    • 打家劫舍 II
    • 打家劫舍 III
    • 股票问题汇总
    • 零钱兑换
    • 爬楼梯
    • 最大正方形
    • 把数字翻译成字符串
    • 丑数
    • 斐波那契数列
    • 礼物的最大价值
    • 圆圈中最后剩下的数字
    • 添加符号得到目标和方法数
  • 树
    • 【二叉树】翻转
    • 【二叉树】构造by前序中序
    • 【二叉树】构造by中序后序
    • 【二叉树】合并
    • 【二叉树】镜像
    • 【二叉树】判断对称
    • 【二叉树】前中后序遍历
    • 【二叉树】深度
    • 【二叉树】展开为链表
    • 【二叉树】直径
    • 【二叉树】重复的子树
    • 【二叉树】最近公共祖先
    • 【二叉树】B是A的子结构
    • 【二叉搜索树】第K大元素
    • 【二叉搜索树】第K小元素
    • 【二叉搜索树】构造/遍历
    • 【二叉搜索树】判断
    • 【二叉搜索树】判断后序遍历
    • 【二叉搜索树】转累加树
    • 【二叉搜索树】转排序双向链表
    • 【二叉搜索树】最近公共祖先
    • 【红黑树】构造
    • 【路径和】根到叶子节点
    • 【路径和】为某一值的集合
    • 【路径和】最大值
    • 【平衡二叉树】判断
    • 【对称二叉树】判断
    • 【完美二叉树】填充右侧指针
    • 【依赖关系树】打包顺序数组
    • 【最大二叉树】构建
  • 位运算
    • 比特位计数
    • 出现超过一半的数字
    • 汉明距离
    • Pow(x, n)
    • 不用加减乘除做加法
    • 二进制中 1 的个数
    • 两个只出现一次的数字
  • 贪心算法
    • 加油站
    • 剪绳子
    • 跳跃游戏
    • 无重叠区间
    • 用最少数量的箭引爆气球
  • 双指针
    • 接雨水
    • 盛最多水的容器
    • 长度最小的连续子数组
    • n数之和
  • 分治算法
    • 为运算表达式设计优先级
  • 二分法
    • 缺失的数字
    • 旋转数组的最小元素
    • 排序数组中查找左右区间
由 GitBook 提供支持
在本页
  • LeetCode 146. LRU 缓存机制
  • 题目
  • 题解

这有帮助吗?

  1. 哈希表

LRU 缓存机制

上一页数组中重复的数字下一页反转链表

最后更新于3年前

这有帮助吗?

题目

运用你所掌握的数据结构,设计和实现一个  LRU (最近最少使用) 缓存机制 。
实现 LRUCache 类:

LRUCache(int capacity) 以正整数作为容量 capacity 初始化 LRU 缓存
int get(int key) 如果关键字 key 存在于缓存中,则返回关键字的值,否则返回 -1 。
void put(int key, int value) 如果关键字已经存在,则变更其数据值;如果关键字不存在,则插入该组「关键字-值」。当缓存容量达到上限时,它应该在写入新数据之前删除最久未使用的数据值,从而为新的数据值留出空间。

题解

哈希表

class ListNode {
  constructor(key, value) {
    this.key = key
    this.value = value
    this.next = null
    this.prev = null
  }
}

class LRUCache {
  constructor(capacity) {
    this.capacity = capacity
    this.hashTable = {}
    this.count = 0
    this.dummyHead = new ListNode()
    this.dummyTail = new ListNode()
    this.dummyHead.next = this.dummyTail
    this.dummyTail.prev = this.dummyHead
  }

  get(key) {
    let node = this.hashTable[key]
    if (node == null) return -1
    this.moveToHead(node)
    return node.value
  }

  put(key, value) {
    let node = this.hashTable[key]
    if (node == null) {
      let newNode = new ListNode(key, value)
      this.hashTable[key] = newNode
      this.addToHead(newNode)
      this.count++
      if (this.count > this.capacity) {
        this.removeLRUItem()
      }
    } else {
      node.value = value
      this.moveToHead(node)
    }
  }

  moveToHead(node) {
    this.removeFromList(node)
    this.addToHead(node)
  }

  removeFromList(node) {
    let tempForPrev = node.prev
    let tempForNext = node.next
    tempForPrev.next = tempForNext
    tempForNext.prev = tempForPrev
  }

  addToHead(node) {
    node.prev = this.dummyHead
    node.next = this.dummyHead.next
    this.dummyHead.next.prev = node
    this.dummyHead.next = node
  }

  removeLRUItem() {
    let tail = this.popTail()
    delete this.hashTable[tail.key]
    this.count--
  }

  popTail() {
    let tailItem = this.dummyTail.prev
    this.removeFromList(tailItem)
    return tailItem
  }
}
LeetCode 146. LRU 缓存机制